
@@export_scripts@@

@jamiesanson

Building
Kotlin-first
Libraries
Kotlin London - 7th March
2024
Jamie Sanson

@@export_scripts@@

@jamiesanson

Jamie Sanson
Staff Software Engineer @

M&S

@@export_scripts@@

Hello! I'm Jamie Sanson. I've been
working in Android for almost a decade
now, and have recently made the move
from Wellington, New Zealand over to
London (as you can probably tell by the
accent).

I'm working as a Staff Software
engineer in the Mobile Platform space
at Marks and Spencer, and I'm stoked
to be here for the first Kotlin London in
a while!

@@export_scripts@@

@jamiesanson

Agenda
Vintage Kotlin1.
"Modern" Kotlin2.

Designing a library API3.
Building Java-second4.
Tracking your API5.

@@export_scripts@@

Today I'm going to be talking about building
Kotlin-first libraries, and there's a few things to
cover!

First up, modern kotlin, and vintage kotlin, which
feels like the inverse of modern to me!

Next up we're going to be diving in to library API
design. There's a bunch of meaty topics in here -
type theory, system design, you name it - but it's
all backed by code samples, so should be alright!

We'll then look a bit at taking something Kotlin-y
and making it Java-compatible, and finally look at
keeping your lovely new API consistent.

@@export_scripts@@

@jamiesanson

The early
days of
Kotlin

@@export_scripts@@

Cast your mind back to the early
days of Kotlin. Some of you may be
relatively new to the Kotlin
ecosystem, but we're talking way
back - more than a decade.

@@export_scripts@@

@jamiesanson

A faster Scala
2012

@@export_scripts@@

Jetbrains introduced Kotlin to the
world in 2012, as a new language for
use in their IDEs. They wanted
something like Scala in terms of
language features, but wanted the
language to compile quickly .

Kotlin went 1.0 in 2016, touted from
the get go as a programming
language for JVM and Android.

1

file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1

@@export_scripts@@

@jamiesanson

The language
of Android

2017

@@export_scripts@@

In 2017, just one year after Kotlin
reaches 1.0, Google announced first-
class support for Kotlin in Android.

This announcement came
alongside code labs and
documentation from Google, as
well as a java -> Kotlin converter.

@@export_scripts@@

@jamiesanson

-ktx
2017

@@export_scripts@@

In the early days of Kotlin support in Android,
Google aimed to provide Kotlin APIs without
rewriting their entire suite of libraries.

To do so, ktx (or Kotlin Extension) libraries were
introduced. These libraries were thin layers on top
of existing Java APIs - a sprinkling of syntactic
sugar for the Kotlin early adopters.

Something to note here is that we've started out
with Kotlin Library constrained to underlying Java
mechanics. Sure, it minimised the amount of
NullPointerExceptions apps saw, but the Kotlin
facade was just Java with nullness.

@@export_scripts@@

@jamiesanson

Kotlin/Multiplatform
2017

@@export_scripts@@

Kotlin Multiplatform came along in late 2017,
and started to lay the foundations for Kotlin
in other places, like running on the
JavaScript engine, or on native targets.

This changed things a little. If you write
"common" Kotlin code, you're not writing
directly on top of Java libraries & APIs
anymore. You've just got the Kotlin Standard
Library to deal with, which uses more of the
language features Kotlin has on offer.

Then along came some other minor things..

@@export_scripts@@

@jamiesanson

Coroutines
2018

@@export_scripts@@

... like coroutines in 2018..

@@export_scripts@@

@jamiesanson

Android
Jetpack
Libraries

2019

@@export_scripts@@

... fully-Kotlin libraries for Android
developers in 2019...

@@export_scripts@@

@jamiesanson

Compose
2021

@@export_scripts@@

... and eventually you have Compose.
The epitome of modern Kotlin - a
declarative state management
system build by both Jetbrains and
Google.

Compose UI has changed the way we
build Android apps, and if Jetbrains
has anything to say about it it'll also
change the way we build for desktop,
web, and maybe even iOS?

@@export_scripts@@

@jamiesanson

"Modern"
Kotlin

@@export_scripts@@

Which takes us to where we are
today. Kotlin as a language has
grown like crazy compared to its
original competitors like Java and
Scala, and is ultimately a pretty
different ecosystem nowadays.

@@export_scripts@@

@jamiesanson

What makes a
library
modern?

Thoughtful on typing–
Frugal on language features–
Kotlin for Kotlin–

@@export_scripts@@

This talk is about kotlin-first libraries, and
to be kotlin-first, you need to be modern.

But what makes a library modern? It all
comes down to using the right language
features, thinking a little bit about
designing your types, and leaning on the
compiler to do the hard work for you.

To me, there's three things that show a
library is modern and mature.

@@export_scripts@@

@jamiesanson

Aside - In the
dependency tree

@@export_scripts@@

Before we get in to what I mean by those things, I
figured we'd set the scene by briefly mentioning
dependencies. This is less Kotlin-specific and more
system-design-y, but it'll help to show the value of
designing your APIs carefully.

All libraries are dependencies, but they differ by
where they aim to sit in the hierarchy of design
decisions in a consuming project.

For example, libraries can be leaf-level - think a
simple UI component that plugs in to your project.
Libraries can also be fundamental building blocks of
your project. The former will have very little influence
on how you change aspects of your project in future,
whereas the latter most definitely will.

@@export_scripts@@

@jamiesanson

Aside - The Design Space tree 1

https://two-wrongs.com/software-design-tree-and-program-families.html1.

@@export_scripts@@

I've recently come across this great article by a developer
called Chris (I couldn't find his last name), who describes the
overall design off a big complex project as a tree of decisions.
I've added a link here, but don't worry about writing it down -
I'll share the slides at the end.

The idea is that fundamental design decisions, like a , end up
constraining how you design things further down the tree, like
m .

I won't try to explain this in much more detail, as the article
does a far better job of it than I could, and we've got Kotlin to
talk about. The important thing to take away from this, is that
our library could be an m , or it could be a c .

If we're designing something that sits in the center of a big
dependency tree, we should make sure we think about how
whatever we provide influences design decisions of
consumers.

file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1

@@export_scripts@@

@jamiesanson

Thoughtful on
typing

@@export_scripts@@

A good place to start with any system you're
looking to build is to gather requirements to
form an understanding of exactly the
problem you're looking to solve.

When building a library, you've generally got
a pretty good understanding of inputs and
outputs, and what exactly it is you need to
be able to do. The thoughtfulness around
typing comes when you consider who is
actually going to use your code.

@@export_scripts@@

@jamiesanson

Typing & the Law of
Demeter

@@export_scripts@@

First up on Typing, let's chat about a term
you may be familiar with - the Law of
Demeter, also known as the Principle of
Least Knowledge.

The Law of Demeter pretty much says don't
talk to strangers. Good advice in general.

When applied to designing a type, it largely
means don't give away too much
information about your inner workings, and
keep a nice and succinct API surface that
doesn't leak abstractions all over the place.

@@export_scripts@@

@jamiesanson

Typing & the Law of
Demeter
// Too much knowledge
fun <T> getFlagValue(
 name: String,
 deserialize: (JSON) -> T
): T

@@export_scripts@@

This example is pretty relevant, as you'll see later.
Imagine you've got a feature flagging library that
deals with JSON values under the hood, and you're
looking to get a value for a given flag. This could be
modeled in a bunch of different ways, but here's one
quite flawed way of doing it.

In this example, consumers need to know quite a few
things: the name of the flag (a given), the type they
expect for a flag (also a given), and more importantly
the fact that a Flag is JSON-backed and they need to
figure out how to deserialize it.

The problem with this approach is the JSON bit. Every
interaction with this API needs to be wary of an
underlying fact of the system - it's JSON backed.

@@export_scripts@@

@jamiesanson

Typing & the Law of
Demeter
class Flag<T>(
 val name: String,
 internal val deserialize:
(JSON) -> T,
)

@@export_scripts@@

Let's now look to improve this a wee
bit by introducing a type to model
this "Flag". All we're doing here is
taking the three inputs from our
first function - the name of the Flag,
the type of the Flag, and some way
of turning JSON into that type.

@@export_scripts@@

@jamiesanson

Typing & the Law of
Demeter
// Juuuuuust right
fun <T> getFlagValue(
 flag: Flag<T>
): T

@@export_scripts@@

This better example then uses that Flag type,
and doesn't actually change the inputs to the
function at all. What it does do is package
concerns more tightly - getting in to the "not
talking to strangers" bit of the Law of Demeter.

By introducing a "Flag" type, we're minimizing
the amount of knowledge most of the
interactions with our library need to have. We
still expose the notion of being JSON-backed
when creating a Flag, but even this can be
minimized by setting a default value for our
deserialize input.

@@export_scripts@@

@jamiesanson

Typing & invalid
states

@@export_scripts@@

Something else to consider when
designing your API is to consider what
states are valid, and what you can do with
types to minimize invalid states.

There's many a blog post on this topic,
and you'll find my favorites referenced in
the slides. The gist of these is: the more
you constrain your inputs and outputs,
the less state checking you need to do,
and ultimately your chance of bugs
arising goes down.

1

file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1

@@export_scripts@@

@jamiesanson

Typing & invalid
states
class Flag<T>(
 val name: String,
 internal val deserialize:
(JSON) -> T,
)

@@export_scripts@@

Going back to our flag example
from before, we noted that we had
three inputs - type, name, and how
to get a type from JSON.

Clearly name is the "name" of the
flag, right? This is probably
something snake_cased, and refers
to something you'd get from some
kind of backend.

@@export_scripts@@

@jamiesanson

Typing & invalid
states
val myFlag = Flag(
 name = "Jamie Sanson",
 deserialize = ...
)

@@export_scripts@@

But then along comes Jamie. He thinks
"name" means his name, and doesn't think
twice about it.

This is obviously a pretty contrived example,
but it shows the point I'm trying to make
pretty well. If you're using raw types in your
API, chances are someone is going to pass
the wrong thing in at some point, and end
up in a weird state. You could argue that's
on the consumer, but in general it's better
to constrain your inputs as much as you can
from the get-go.

@@export_scripts@@

@jamiesanson

Typing & invalid
states
class Flag<T>(
 val name: Name,
 internal val deserialize:
(JSON) -> T,
) {
 value class Name(val value:
String)
}

@@export_scripts@@

A fix for this problem is to introduce a
value class to wrap our input into
something as little more meaningful.

This time when creating a Flag we need
to provide a Flag.Name , making it super
explicit that the string we're providing
isn't just any old string.

The extra neat thing here is that in using
value class es, we get the benefit of
strong typing on our inputs, at no cost to
memory usage at runtime!

@@export_scripts@@

@jamiesanson

Frugal on
language
features

@@export_scripts@@

Okay, we've talked typing, but we're not done yet. The
next principle that I think makes a modern Kotlin
library is a good understanding of language features -
both what to use, and what not to use. When used
correctly, library maintainers can describe exactly
what inputs and outputs should be, produce APIs
which can be easily added to in future, and give
consumers the right level of access to change the
behavior of the system without shooting themselves
in the foot.

We've already seen that I think value class es are
definitely worth using, but there's quite a bit more to
think about here, both with your inputs AND outputs.

@@export_scripts@@

@jamiesanson

Language features -
data classes
class Flag<T>(
 val name: Name,
 internal val deserialize:
(JSON) -> T,
) {
 value class Name(val value:
String)
}

@@export_scripts@@

Let's chat API maintenance, and jump
back to our Flag example from before.
The astute listener in the audience has
probably noticed something curious -
we're not using a data class here.

We're actually not using data classes for
good reason - to allow us to add
information to this type without
producing a breaking change in binary
compatibility for consumers. Let's dig in
to this a little.

@@export_scripts@@

@jamiesanson

Binary compatibility
and data classes

@@export_scripts@@

Data classes are a nifty shortcut in Kotlin that allows
us to create struct-like types. Take a class with
properties in it's constructor, whack a data on the
front of it, and you get a bunch of functionality for
free: Generated equals, hashcode and toString
methods, as well as copy-constructor, and
componentN functions.

The problem with data classes in public API comes
from the latter two bits of free functionality - copy-
constructors and componentN functions.

I'll using a Flag-related example to keep in theme, but
know that I'm referring to yet another great blog post
- this one by a very well-known Android developer
named Jake Wharton .1

file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1

@@export_scripts@@

@jamiesanson

Binary compatibility and
data classes
 data class Flag<T>(
 val name: Name,
+ val description: String?,
 internal val deserialize: (JSON) -> T,
) {
+ constructor(
+ name: Name,
+ deserialize: (JSON) -> T
+) : this(name, null, deserialize)
}

@@export_scripts@@

Let's pretend our Flag is a data class for a
moment, and we want to add a new property -
"description". We're trying to not break the API
for consumers using the constructor without a
description, so also add in a new constructor
matching the old signature.

Not bad, right? Well unfortunately, yes bad.
Although this looks pretty benign, we're
actually introducing TWO binary-incompatible
changes, and that's all thanks to those things I
mentioned earlier - copy-constructors and
componentN functions for destructuring.

@@export_scripts@@

@jamiesanson

Binary compatibility and
data classes
// Before change

✅

val (name, deserialize: (JSON) -> Int) =
flag

// After change

"

val (name, deserialize: (JSON) -> Int) =
flag
 ^ 'component2()' function
returns
 'String?', but '(JSON) ->
Int' is expected

@@export_scripts@@

The easiest way to illustrate this is to consider what
happens to destructuring when we add in
parameters. If we add parameters wherever we want -
in this case in the middle of our parameter list - we
change the return type of the following componentN
functions.

Here component2 used to return a lambda, but now
returns a nullable String. Although consumers
probably aren't relying on these methods, we're
allowing them to through the use of data classes in
public APIs.

Copy-constructors break API in similar ways. In the
interest of time I'll refer you back to that blog post I
mentioned, which will be included in the slides!

@@export_scripts@@

@jamiesanson

Mitigating data class
binary compatibility

@@export_scripts@@

The fix for these issues is largely to
just not use data classes. This
means writing your own equals and
hashcode and toString functions,
which feels archaic and no good.

Luckily there is a happy middle-
ground, and that's through the use
of compiler plugins.

@@export_scripts@@

@jamiesanson

Mitigating data class
binary compatibility
@Poko class Flag<T>(
 val name: Name,
 val description: String?,
 internal val deserialize:
(JSON) -> T,
)

@@export_scripts@@

A very handy compiler plugin exists call Poko, which
stands for Plain old Kotlin Objects.

This plugin gives us the nice, binary-compatible
generated methods (equals, hashcode and toString),
without any of the footguns. Swap out the data
modifier with an @Poko annotation, and you're there!
You'll still need a new constructor to not break Java
consumers, but it's a lot less for us to think about as
library maintainers.

There's a couple more nuances to consider here
around the use of the builder pattern to avoid further
Kotlin complexities - if you're interested in reading
more in to this I'd definitely recommend having a
read through Jake's post.

@@export_scripts@@

@jamiesanson

Sealed types in
public API

@@export_scripts@@

Another language feature to watch
out for in your public APIs is sealed
types. Kotlin has a few of these -
sealed class es, sealed
interface s, and enums . While
these are great for modeling sum
types - a type which could be one of
a defined set of options - Kotlin
makes sure you handle all these
options.

@@export_scripts@@

@jamiesanson

Sealed types &
exhaustive when
sealed interface FlagType {
 data object Feature: FlagType

 @Poko class Experiment(
 val id: String
): FlagType
}

@@export_scripts@@

Let's add a "type" to our flag. For
example, we know flags could
either be feature flags, i.e turning
something on and off, or they could
be experiments, in which case they
might need an ID or something.

@@export_scripts@@

@jamiesanson

Sealed types &
exhaustive when
when (val type = flag.type) {
 is Feature ->
 doSomething()
 is Experiment ->
 experiment(type.id)
}

@@export_scripts@@

There's nothing stopping a
consumer writing code that looks
like this! For whatever reason
someone might be switching on
the type of the flag, and doing
something with the result.

@@export_scripts@@

@jamiesanson

Sealed types &
exhaustive when
 sealed interface FlagType {
 data object Feature: FlagType

+ data object Rollout: FlagType

 @Poko class Experiment(
 val id: String
): FlagType
 }

@@export_scripts@@

Further down the track, we might decide
that there's actually a third flag type we
want to model, that were previously
bundled in with features. Rollout flags
might represent flags that exist to ramp a
feature up from 0-100% adoption, and can
then be removed later on.

Unfortunately, we're using a sealed
interface, which means this addition can't
be made without breaking those exhaustive
when's that might exist in consuming
codebases.

@@export_scripts@@

@jamiesanson

Sealed types in
private API

@@export_scripts@@

The problem is that sealed types are
actually really handy. We want to be
using them in our own code, as they
let the compiler do more work on our
behalf.

The good news is we can definitely
keep using sealed types internally by
just being slightly more mindful of
how we define what's public and
what isn't.

@@export_scripts@@

@jamiesanson

Sealed types in private API
class User internal constructor(
 internal val type: Type,
) {
 constructor(id: ID) : this(
 type = Type.Identified(id = id),
)

 companion object {
 val Guest: User get() = User(Type.Guest)

 value class ID(val id: String)

 internal sealed interface Type {
 data object Guest : Type
 value class Identified(val id: ID) : Type
 }
 }

@@export_scripts@@

There's a lot of code on screen here, but bear with me.

This example shows how we might model a User , which
is either a Guest, or someone identified through an ID.

We give consumers two public entry-points to get an
instance of this thing. One constructor taking an ID, and a
Guest getter on the companion object.

Consumers now can't do much at all with this User type,
but internally we're able to get all the benefits of sealing,
and can even use language features like data classes
without worrying about API incompatibility.

Adding a new case to Type would still break internal API,
but that's kind of what we expect!

@@export_scripts@@

@jamiesanson

Be wary of function
composition

@@export_scripts@@

There are a few other Kotlin features
you should be wary of when building
your public API. This one's again more
general, though, and applies to most
programming languages with
functional paradigms going on.

Having inputs be functions which end
up being composed internally is a neat
way to abstract operations away, but
they can quite easily get out of hand.

@@export_scripts@@

@jamiesanson

Interceptor pattern - OkHttp 1

https://square.github.io/okhttp/features/interceptors/1.

@@export_scripts@@

Functions which end up being composed to create a chain of
behavior is super powerful.

An example of these being used for good is in a library called
OkHttp. This library models a call chain to an Http endpoint as
a composition of interceptors, which can modify and even
veto requests & responses as they pass through the stack.

You can plug in on either side of OkHttp core, giving you full
access to the lifecycle of a request, with the ability to rewrite
requests and responses as they go!

This style of design is known as the Interceptor pattern. It's
super powerful, and allows libraries - in this case OkHttp core -
to define extensible actions while having no knowledge of
whatever random functionality you've decided to plug in.

This ends up being very useful, and a big reason why OkHttp
has been so well loved over the years, but it also exposes a
massively broad integration point.

file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fn1
file:///Users/jamie.sanson/Library/Containers/net.ia.presenter/Data/Library/Application%20Support/iA%20Presenter/@@base@@#fnr1

@@export_scripts@@

@jamiesanson

Interceptor pattern
Returned JSON content is
always prepended with a
while(1){} clause to mitigate
abuse.

@@export_scripts@@

Having a broad integration point for
something as generic and at times as
fiddly as HTTP works out quite well.

For example, imagine you're reading
through an API spec, and see this line of
documentation.

Aside from the fact that prepending a
while true loop to a JSON document is
completely ridiculous, we can abstract
this away from almost all of our
networking stack through an interceptor!

@@export_scripts@@

@jamiesanson

Interceptor pattern
class RemoveBodyPrefixInterceptor : Interceptor {
 override fun intercept(chain: Interceptor.Chain):
Response {
 val response = chain.proceed(chain.request())

 if (response.body == null) return response

 val newBody =
 response.body
 ?.string()
 ?.removePrefix("while (1) {}\n")
 ?.toResponseBody()

 return response.newBuilder()
 .body(newBody)
 .build()
 }
}

@@export_scripts@@

Here we have an actual implementation of one of
these interceptors - the one I've written to deal
with this abuse mitigation thing that Adobe likes
to include in their APIs.

Although inputs and outputs are nicely typed, this
Chain thing refers to a composition of functions.

What this interceptor allows us to do is make the
call, and rewrite the response body if it includes
the while true thing.

Serialization plugs in at a different layer, and
knows nothing at all about this weird quirk!

As you can see, this pattern is super useful!

@@export_scripts@@

@jamiesanson

Be wary of function
composition

@@export_scripts@@

That's not to say that every library should use this pattern. OkHttp is
modeling something massively generic, and often times massively
intricate. It's also almost exclusively used in a very low layer of that
decision tree thing we talked about earlier.

That doesn't change the fact that consumers can come along, pass
in an incorrect interceptor, and break all networking across their
entire project. Obviously it's on the consumers to not do this, with
great power comes great responsibility and all that, but it raises an
interesting thought - do we need something this general?

I think the answer, in most cases, is "probably not".

If your library involves screwing in screws, it's probably better to
give your users a screwdriver rather than a hammer.

–

If your library involves getting the value of a feature flag from one
of a bunch of different sources, you probably don't need an
interceptor chain because it's probably a little easier to work with
than HTTP.

–

@@export_scripts@@

@jamiesanson

Go wild (internally)

@@export_scripts@@

In a nutshell, the point I'm trying to make in
this section is that typing matters for your
consumers, and there's a bunch of language
features you can avoid that'll make your life
easier in future.

That's not to say you shouldn't use all the
features that makes sense to you internally.
If you need sealed types, data classes, and
function composition, then use it! But if you
want to use them publicly, consider what it
means for maintenance and your
consumers.

@@export_scripts@@

@jamiesanson

Building a
modern
Kotlin library
Example: Feature
flagging

@@export_scripts@@

We've talked a lot about things to
consider when building a Kotlin
library, but let's look more at an
example.

At M&S, we've recently re-thought
how we do feature flagging. This
lets us avoid vendor lock-in, and
work more easily in a highly
modularized codebase.

@@export_scripts@@

@jamiesanson

Requirements
Feature flags in feature
modules

–

Pluggable backends–

Consistent API across Kotlin
and Swift

–

@@export_scripts@@

The feature flagging work had a few core
requirements.

Allow feature flags to be defined per-module,
meaning adding of flags doesn't invalidate
build caches in other modules

1.

Pluggable backends. Vendor lock-in is
something we want to avoid, and allowing
consumers to plug in whatever they want as a
source of flag values was something we
needed to consider from the get-go

2.

API Consistency. We're a Mobile platform
team, and at M&S we largely do mobile via
Native apps.

3.

@@export_scripts@@

@jamiesanson

The Design

@@export_scripts@@

With requirements sorted and a crack
team of engineers assembled (myself
and the iOS guy - Daniel Tull), we got
to work thinking about design.

Now in this presentation we've talked
a lot about design principles, and
how you figure out what your API
surface should look like. In practice
we didn't actually start with
principles.

@@export_scripts@@

@jamiesanson

Abstractions
Flag–
Source of Flag values–

@@export_scripts@@

We started out by thinking about
abstractions. To fit the
requirements, we only really
needed two things - something to
model a Flag, and something to
model a thing that provides values
for flags.

@@export_scripts@@

@jamiesanson

Flag
@Poko class Flag<T>(
 val name: Name,
 val description: Description,
 internal val defaultValue: ()
-> T,
 internal val deserialize:
(JSON) -> T,
)

@@export_scripts@@

We started out thinking about a Flag, specifically what kind of
information it should be holding on to. What we landed on is
something very similar to what you've seen already.

We know a flag needs a name. We WANT a flag to have a
description and default value when no providers have a value
for it.

We also figured it'd be cool to have a Flag know how to
deserialize itself, meaning the library itself doesn't need to
know about any custom serialization setups your app might
have.

Why JSON? We know we need multiple sources, and to
compose them together we're going to need a common
language. We picked JSON given some of the third-party
tooling we were integrating with. We could have used
anything here, really, but went with JSON as it worked for our
use-cases!

@@export_scripts@@

@jamiesanson

FlagProvider
typealias FlagProvider =
(Flag.Name) -> JSON?

@@export_scripts@@

By using JSON as this common
language between flags and the thing
providing their values, we can then
model a flag provider as a simple
function - something that takes a Flag
name, and maybe gives you a JSON
value back.

We started here, but as the design <>
build iteration went on we found a few
drawbacks of modeling this so simply.

@@export_scripts@@

@jamiesanson

FlagProvider
fun vetoProvider(
 delegate: FlagProvider
) = { name ->
 // Get the value
 val result = delegate(name)
 // Throw it out
 null
}

@@export_scripts@@

The main drawback from using functional
types as input, as we chatted about earlier, is
that they end up maybe being a little too
powerful. This example shows how you can
compose one of these functions to do pretty
much whatever you want - any kind of side
effect, any kind of interception, whatever!

While powerful, this allows consumers to
change the behavior of the library entirely. The
problematic thing here is that we can't predict
how consumers will use these inputs, meaning
we can't write tests for these inputs.

@@export_scripts@@

@jamiesanson

Constrained
functional inputs

@@export_scripts@@

Alright, so we kind of want functional
inputs, but we don't want consumers to
plug in absolutely any behavior they'd like.
How do we model this??

We largely landed on the solution through
trial-and-error, and considering side-effects
like analytics when flags are evaluated.

The result is something that keeps the
public-facing API pretty functional, but
constrains how much they can be
composed - let's see a code example.

@@export_scripts@@

@jamiesanson

Constrained
functional inputs
fun FlagProvider(
 name: String,
 resolve: (Flag.Name) -> JSON?
): FlagProvider

@@export_scripts@@

Instead of simply using a type-alias,
let's introduce a new type. Our public
API doesn't change all that much!

We're now using a top-level function
to create a FlagProvider, which allows
us to pass in other information, like
the "name" of a provider - useful for
debugging and side-effects in
general.

@@export_scripts@@

@jamiesanson

Constrained
functional inputs
class FlagProvider internal
constructor(
 internal val resolve:
(Flag.Name) -> Output,
)

@@export_scripts@@

Our FlagProvider implementation
now uses a slightly different looking
function under the hood. The only
real difference here is the return
type - this thing called Output . But
what's an output?

@@export_scripts@@

@jamiesanson

Constrained
functional inputs
internal data class Output(
 internal val outcome:
Outcome,
 internal val effect: Effect,
)

@@export_scripts@@

Things get a bit weird from here. Our "Output" is an
"Outcome" and an "Effect"?

These types exist to do two separate things. The outcome
describes the result of a flag resolution. It's internal, so it can
be sealed, and be one of either a "Found", "NotFound" or
"Failure" (for the case where a provider throws).

An "Effect" is another internal thing - this one representing a
function to call as a side-effect to flag evaluation.

I won't go into the details of either of these types in this talk,
but the important thing to note is the visibility modifiers.
We've taken a function which deals with public types, i.e the
Flag name -> JSON thing, and wrapped it into something
internal.

This gives us total control over the underlying functionality,
meaning we could completely rework this Output thing
without impacting consumers at all!

@@export_scripts@@

@jamiesanson

Keeping functional behaviours
internal
fun FlagProvider(vararg providers: FlagProvider):
FlagProvider =
 FlagProvider composite@{ flagName ->
 for (provider in providers) {
 val output = provider.resolve(flagName)

 if (output.outcome is Outcome.Found) {
 return@composite output
 }
 }

 FlagProvider.Output(
 outcome = Outcome.NotFound(flagName),
 effect = Effect.Empty,
)
 }

@@export_scripts@@

The neat thing in keeping the
implementation of this flag provider
thing a function is that we still get all
the same benefits of writing functional
code.

Consumers probably want more than
one flag provider - maybe one for
Firebase Remote Config, and another
for local overrides. We can write a
composite flag provider using the
underlying functional type pretty easily!

@@export_scripts@@

@jamiesanson

Bringing it all
together

@@export_scripts@@

The one thing we haven't
mentioned is the API for taking a
flag, and getting a value. Luckily for
you, you've already seen it!

@@export_scripts@@

@jamiesanson

Bringing it all
together
class FlagProvider(...) {
 fun <Value> valueOf(flag:
Flag<Value>): Value
}

@@export_scripts@@

Our API for getting the value of a flag looks like this -
the same example we saw earlier when talking about
the Law of Demeter.

Consumers using the flagging library can create an
instance of this FlagProvider somewhere centrally,
pass it around, and use it to get the value for a Flag
they've defined in their feature modules.

A handy side-effects of this is that those feature
modules are now not tied to any implementation of
something at a lower level in their own project. This
means they can be compiled independently so long
as something has a FlagProvider to contribute.

@@export_scripts@@

@jamiesanson

Extra - Reactive
Flags

@@export_scripts@@

A requirement that we deemed out of scope for the first
cut is to support reactive flags. By reactive flags, we mean
flag values that are observable.

Our whole library is currently synchronous, being made
out of one-shot functions. How would we go about
supporting reactive flags?

Our first thought was "oh dear, I guess we need
something reactive at the heart of this thing. Back to the
drawing board"

Our second thought was "oh dear oh dear, which
framework do we use when we don't know what
consumers are using"

Our third thought: "maybe we shouldn't"

As it turns out, the third thought was correct.

@@export_scripts@@

@jamiesanson

Extra - Reactive
Flags
val flagProvider:
StateFlow<FlagProvider>

@@export_scripts@@

Rather than making the return value of
the valueOf function reactive, what if
we simply let consumers create their
own reactive thing from their data
source?

Instead of reactive flag values, we
settled on promoting reactive flag
providers. This allows consumers to opt-
in to reactive-ness if they need it, or use
the synchronous APIs if they don't!

@@export_scripts@@

@jamiesanson

What about
Java?

@@export_scripts@@

At this point we have a pretty robust, very
easily testable library! We've implemented this
alongside a Swift version, which has been
designed in the exact same way. The only
thing left was to write some docs, publish it,
and release it to the world!

In reality that wasn't quite the case. We started
out with the assumption that our consumers
would all be Kotlin-based, so didn't hold back
from using things like functional types, inline
reified functions, and value classes.
Unfortunately, our first consumer was a Java 8-
based Android app.

@@export_scripts@@

@jamiesanson

Supporting Java
retroactively

@@export_scripts@@

We had a few problems to solve in
supporting Java consumers nicely.
What do we do about value classes?
How do we model functional types?
What about reified generics? And
how do we keep Kotlin and Java
APIs separate?

@@export_scripts@@

@jamiesanson

Supporting Java
retroactively
// For use in Java 8

!

fun FlagProvider(
 name: String,
 resolve: (String) -> String?
): FlagProvider

@@export_scripts@@

The solution for all of these
problems was upsetting - we
needed to relax all the beautiful
type-safety we'd just put together.

This function did the job, and allows
Java consumers to pass in a lambda
for the "resolve" bit.

@@export_scripts@@

@jamiesanson

Supporting Java
retroactively
// Usage from Java 8

!

FlagProvider flagProvider =
 FlagProviderKt.FlagProvider(
 "name",
 flagName -> null
);

@@export_scripts@@

Calling this function ends up being
a touch awkward. It's exposed as a
static function on a type generated
by Kotlin, which by default is based
on the name of the file.

Thankfully, Kotlin has a bunch of
useful annotations we can apply to
turn this output into something a
little nicer.

@@export_scripts@@

@jamiesanson

Supporting Java
retroactively
@file:JvmName("FlagProviders")
package
com.marksandspencer.flagging

⋮

@JvmName("create")
fun FlagProvider(...): FlagProvider

@@export_scripts@@

The JvmName annotation tells the Kotlin
Compiler to emit a different name for the
element it's attached to.

We can use this annotation to change the
names of both the generated class for
holding top-level functions, and the
function itself!

By using @file before the package, we can
tell the compiler that we want to name the
class "FlagProviders", and that our factory
function should be called "create".

@@export_scripts@@

@jamiesanson

Supporting Java
retroactively
// Usage from Java 8

!

FlagProvider flagProvider =
 FlagProviders.create(
 "name",
 flagName -> null
);

@@export_scripts@@

We now don't have weird naming!
Very nice.

The next step - hide the other,
Kotlin-specific APIs from Java. Turns
out Kotlin has another handy
annotation for this!

@@export_scripts@@

@jamiesanson

Supporting Java
retroactively
@JvmSynthetic
fun FlagProvider(
 name: String,
 resolve: (Flag.Name) -> JSON?
): FlagProvider

@@export_scripts@@

Introducing @JvmSynthetic . This
handy annotation is something you'll
rarely need, but when you DO need it
you'll be thankful it exists.

By annotating an element as synthetic,
we're telling the compiler to mark this
as synthetic in the generated Java
bytecode. This makes the element
effectively inaccessible from Java, while
keeping it available to Kotlin sources!

@@export_scripts@@

@jamiesanson

Supporting Java
retroactively
@JvmName("create")
- fun FlagProvider(...):
FlagProvider
+ internal fun FlagProvider(...):
FlagProvider

@@export_scripts@@

But what about going the other way around? Can we hide
those nasty, loosely typed declarations from Kotlin
consumers?

Turns out, yes! This one's a little less nice. The internal
visibility modifier doesn't have a Java equivalent, so the Kotlin
compiler simply marks internal members as public in the
generated bytecode!

Kotlin knows about internal through metadata added to
these classfiles, but from a Java consumers perspective,
they're free to use!

We can exploit this behavior by simply marking the things we
don't want Kotlin seeing as internal . Java consumers get to
see em, Kotlin does not. This does result in warnings in Java
projects, but they can be easily suppressed - a bit of a trade-
off, but it means we get to keep our nicely typed API!

@@export_scripts@@

@jamiesanson

Keeping your
API consistent

@@export_scripts@@

One last quick tip. You've worked
hard on building a Kotlin-first
library, with a well considered API.
How do you ensure you don't break
things for your consumers?

Enter: Metalava

@@export_scripts@@

@jamiesanson

Metalava API
tracking

@@export_scripts@@

Metalava is a tool created by Google,
used primarily for API tracking in
public-facing libraries used by
Android developers.

Metalava builds a "signature" of your
public API, which can then be used to
compare the compatibility of that API
from version to version of your code!

The signature for our "flag" type looks
a little like this:

@@export_scripts@@

@jamiesanson

Metalava API tracking
@dev.drewhamilton.poko.Poko public final class
Flag<Value> {
 ctor public Flag(String name, String
description, kotlin.jvm.functions.Function1<? super
com.marksandspencer.flagging.JSON,? extends Value>
decode, kotlin.jvm.functions.Function0<? extends
Value> defaultValue);
 method public String getDescription();
 method public String getName();
 property public final String description;
 property public final String name;
 field public static final
com.marksandspencer.flagging.Flag.Companion
Companion;
 }

@@export_scripts@@

This is clearly pretty terse, but it's not really intended to be
human readable. If we generate this signature and check
it into source, we can then use it to compare with the
current reference.

For example, if I remove the "description" property
accidentally my CI can now explicitly tell me I've made a
breaking change, and I can then take steps to make sure I
don't break my consumers!

The real utility of Metalava comes in when you
inadvertently make changes that'll break your API. You'd
probably be aware when you make the change that
removing a property will break things, but as we talked
about earlier, it's not that hard to make breaking changes
through language features like data classes.

@@export_scripts@@

@jamiesanson

Metalava Gradle Plugin
https://github.com/tylerbwong/metalava-
gradle

@@export_scripts@@

Metalava itself is open-source, but it's not all
that convenient on its own as it's simply
packaged as a jar. Luckily, the world of open
source exists!

If you're building a Kotlin project, changes are
you're using Gradle for build tooling. A gradle
plugin exists that does all the wiring up for you,
and exposes a couple of tasks for generating
and validating these API signatures.

If you're interested in Metalava, I'd highly
recommend checking this out.

@@export_scripts@@

@jamiesanson

Conclusions

@@export_scripts@@

Whew, that's quite a lot of content
for a Thursday evening.

In conclusion, if you're building a
kotlin library

@@export_scripts@@

@jamiesanson

Conclusions
Think about typing–
Be wary of API foot guns, like
data classes

–

Think Kotlin, first. Don't worry
about Java!

–

@@export_scripts@@

@jamiesanson

Questions

@@export_scripts@@

@jamiesanson

Slides
https://jamie.sanson.dev/kotlin-
first-libraries

@@export_scripts@@

If you're after the slides, you can
find them at this link. You'll have
access to all the speaker notes, as
well as links to all the posts I've
referenced throughout. Cheers for
listening!

